Towards a Synthetic Genetic Polymer

Noam Prywes and Kyle Strom ILASOL April 11th, 2018

Towards a Synthetic Genetic Polymer

Noam Prywes and Kyle Strom ILASOL April 11th, 2018

Is there an alternative to DNA?

All of life on earth uses DNA as a data storage medium

What alternatives exist and what can we imagine?

Is there an alternative to DNA?

Two conditions to replace DNA:

1) Stores arbitrary information

2) Can be copied

How is information copied?

DNA replication is semiconservative

-Complementary strands form a duplex

-One strand can template the chemical synthesis of its complement

Why would we want to do this?

1) Unprecedented data storage capabilities

Log10 bits encoded in production or demo

Church, G. M.; Gao, Y.; Kosuri, S. Science 2012, 337, 1628.

Why would we want to do this?

1) Unprecedented data storage capabilities

2) Explore the space of possible genetic polymers
-How big is this space?
-Are nucleic acids uniquely suitable?

Generalized genetic polymer

Trifunctional connector (TC)

Recognition units (RU)

Ionized linkers (IL)

*Not the only way to store information in a molecule

Hud, N. V.; Cafferty, B. J.; Krishnamurthy, R.; Williams, L. D. Chem Biol 2013.

Previous attempts

-Mostly modified nucleic acids

Pinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S.-Y.; McLaughlin, S. H.; Herdewijn, P.; Holliger, P. Science 2012, 336, 341–344.

Previous attempts

Alternative chemical reactions

Base pair:

Schiff

Backbone:

Sonogashira

Differences with respect to NAs

In design:

-Binary rather than tetranary -Symmetric

Chemically:

-Covalent base pairs -Insoluble in water -No enzymes

Model dimers

Model dimers

 $\mathsf{R} = \mathsf{CO}_2(\mathsf{CH}_2\mathsf{CH}_2\mathsf{O})_2\mathsf{CH}_3$

Reversible duplex formation

Reversible duplex formation

Model dimers

Homodimer

Steps a and b were conducted in an NMR tube containing 0.5 mL 0.02% TFA/CDCl3 and 10 mg 4 Å mol. sieves, starting with 0.01 M macrocycle. a) 30 equiv 3-ethnylaniline. b) 60 equiv 3-ethynylbenzaldehyde. c) 2x10-2 mbar, 120 °C, neat. d) 5 equiv methyl 3,5 diiodobenzoate, 1 equiv Pd(PPh3)4, 0.5 equiv Cul, 6 uM degassed DMF, 60° C.

Homodimer

Steps a and b were conducted in an NMR tube containing 0.5 mL 0.02% TFA/CDCl3 and 10 mg 4 Å mol. sieves, starting with 0.01 M macrocycle. a) 30 equiv 3-ethnylaniline. b) 60 equiv 3-ethynylbenzaldehyde. c) 2x10-2 mbar, 120 °C, neat. d) 5 equiv methyl 3,5 diiodobenzoate, 1 equiv Pd(PPh3)4, 0.5 equiv Cul, 6 uM degassed DMF, 60° C.

Heterodimer

Steps a and b were conducted in an NMR tube containing 0.5 mL 0.02% TFA/CDCl3 and 10 mg 4 Å mol. sieves, starting with 0.01 M macrocycle. a) 30 equiv 3-ethnylaniline. b) 60 equiv 3-ethynylbenzaldehyde. c) 2x10-2 mbar, 120 °C, neat. d) 5 equiv methyl 3,5 diiodobenzoate, 1 equiv Pd(PPh3)4, 0.5 equiv Cul, 6 uM degassed DMF, 60° C.

Future work

Longer polymers - information storage

Alternative base pairs/backbones

Function - selections for binders or catalysts

Translation - from one synthetic polymer to another

Vesicles

Acknowledgements

Kyle

Previous attempts

Without nucleic acids:

Electrostatic connections (Terfort 1992)

AFM "sequencing"

Riss, A. et al. Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. Nature Chem 1–6 (2016). doi:10.1038/nchem.2506