How frequent is biotic life in space?

The Impact of Kepler on the likelihood of Extra-terrestrial Life

ILASOL 1/12/2013 Amri Wandel - The Hebrew University of Jerusalem

How frequent are terrestrial exo-planets? 1990: do stars have planets? 2000`s: The exo-planet boom ♦ 2009: how about Earthlike planets? 2011: in the Habitable zone? What has changed with Kepler?

Planetary disks being born in Orion

Doppler method is biased: massive,near-sun planets

5

Space-telescoes for the search of Earthlike planets

SIM

Kepler 2010

The transit method

The inclination must be very close to 90°

The Kepler mission Search of Earthlike exo-planets Milky Way Galaxy

Kepler Search Space

— 3,000 light years –

Sagittarius Arm

🕀 Sun

Orion Spur

Perseus Arm

Kepler's first planets

Planet Size

Planet Temperature & Size

The Habitable Zone

How many **biotic** wolds in our Galaxy? Kepler 20ef 19.12.2011

10¹¹ stars 10% Sunlike

Planets in HZ

Kepler 22b 5.12.2011

Earthlike

The Drake equation How many civilizations in our Galaxy?

15

How many biotic planets are in our cosmic neighborhood?

- According to Kepler misson's findings, earth-sized planets are frequent
- Obviously some earth-sized planets are within the Habitable Zone of their sun

• Thus probably F(E planet in HZ)~1 and the number of biotic planets depends merely on the probability for evolution of life within the Main Sequence lifetime of their sun

 On Earth life has appeared ~1Gy after the formation of the Solar System, that is 10% of the MS-lifetime of the Sun, but complex life took longer.

Two probability distributions for evolution of life on terrestrial planets vs. time

The probability for the evolution of biotic life on an Earthlike planet :

Two extreme situations:

Optimistic: Earth is a typical case, $F_b \sim 1$

Pessimistic: Usually evolution ofbiotic life takes much longer than ittook on Earth $F_b < < 1$

The distance to our nearest living neighbor

Probable distance to nearest biotic exo-planet: $D_{b} \sim 10 \text{ Iy } F_{b}^{-1/3}$ In the two extreme scenarios: **Optimistic:** $F_{b}=1 \rightarrow D_{b} \sim 10$ ly **Pessimistic:** $F_{b} = 0.001 \rightarrow D_{b} \sim 100 \text{ ly}$

Distance to nearest biotic planet vs Fb

After the Kepler mission

For the first time in history astronomy may be able to estimate how common are biotic life bearing planets: probably some could be found within 30 ly

Milky Way Galaxy

(epler Search Space -

- 3,000 light years -

Sagittarius Arm