

And yet GARD evolves!

11Apr18

Doron Lancet Dept. Molecular Genetics Weizmann Institute of Science, Israel

Eppur si muove

And yet it moves

GARD Evolution NASA defined life broadly as "A self-sustaining* chemical system capable of Darwinian evolution."

*Homeostatic, replicating

Steven A. Benner, "Defining Life" Astrobiology 10 (10) 16 Dec 2010 Special Collection of Essays: What is Life?

NASA defined life broadly as "A self-sustaining chemical system capable of Darwinian evolution."

The open question : What was the earliest **evolving replicator**

"RNA World" in the primordial ocean

Late bombardment

Cool down a bit

Is there an alternative replicator?

Idée fixe

An idea that dominates one's mind, especially for a prolonged period

Examples from Origin of Life research

- RNA is the only informational replicator
- Lipids can only make compartments
- Enzymes, ribozymes and minerals are the only catalysts
- Metabolic networks cannot evolve

The alternative replicator may be a lipid micelle

Lipids come from space

Meteorite extract forms lipid vesicles

The Murchison chondritic (carbonaceous) meteorite

David Deamer and colleagues

Lipid structure advantages for Life's origin

Lipid Vesicle

Lipid Micelles

Lipid structures:

- Form *spontaneously* from dilute solutions
- Fluidic allow easy *exchange* and *interaction*
- Heat *resistant* (early planetary emergence)
- Opportunistic (any available lipids work)
- May harbor significant *catalysis*
- Undergo facile *fission* (splitting)
- May encompass aqueous *volume* (vesicles)
- Harbors compositional information

Compositional information is metabolicaly copied at G-phase prior to cell division

Kinetically-controlled of compositional replication

Kinetically biased non- equilibrium **composition prevails along repeated splits**

GARD: the Graded Autocatalysis Replication Domain model

Experimental evidence for such a process

Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth Neal K. Devaraj and colleagues, PNAS 2015

lipid-exerted non-

enzymatic catalysis

Mutually catalytic networks - Kauffman and Dyson

of Order Stuart A. Kauffman Freeman Dyson Origins of Life

The Origins

The GARD world: not a theoretical model!

GARD simulations:

- ®_{ij} are **given by the chemistry** of the participating lipids.
- Simulations portray the internal concentrations at which replication Takes place.

The red "cloud" is a position in compositional space at which concentrations remain unchanged across many growth-split cycles: Replicating "Composome"

Composome = attractor

n3

na

Composome

 n_1

Trajectory in

compositional

space, axes are

concdentrations

Carpet

And yet GARD compositions evolve! 0.07 0.06 X3-X300 Computer 0.05 higher Fraction simulation 0.04 composome with 5,000 fitness in new 0.03 repeats of environment 0.02 single 0.01 compound removal from 0 -2 3 2 -1 0 log10(Growth) environment

Open-ended evolution in response to continuous environmental chemical changes

Newly emerging composomes along the time axis

NASA definition for Life "A self-sustaining chemical system capable of Darwinian evolution."

GARD lipid composomes:

 Fulfill the NASA definition of life
Embody all 3 "pillars" of life

Full fledged : (1Vesicular compartment (2Covalent metabolism (3compositional information copying

Split-effected replication of both shell and lumen

Futuristic computer Simulations of M-GARD

The *In-silico* Chemistry of 2028 are predicted* to provide accurate simulations of protein folding, enzyme specificity, hence also M-GARD open-ended evolution

*Borhani, Shaw The future of molecular dynamics simulations, *J computer-aided molec design* **26**, 15-26, .2012

Supercomputing

Quantum computing

GARD affords an estimate of life's probability

Area of 1/50 of earth surface = 10^7 km^2 Volume of top 10 meter = 10^{14} m^3 Replicator of 10nm at 10^{-5} by volume 10^{-19} m^3 **Total GARD-type replicators = 10^{33}**

Molecular repertoire $N_G = 100$ F choose micelle size N=36 (a small micelle) Total **Number of GARD combinations** ~10³³ based on the compositional information

formula: $\begin{pmatrix} N_G + N - 1 \\ N \end{pmatrix}$

Thus, **all possible compositions** were present **Including** the **best replicator** for the parameter set

Life is probable!

Planetary time-line suggested by GARD predictions

Follmann & Brownson 2009 *Naturwissenschaften* **96**, 1265-1292.

Search for life on extrasolar planets

This?

Or that?

Search for life on extrasolar planets

POTENTIAL HABITABLE EXOPLANETS

Earth

Tau Ceti e*

Gliese 667C c

Gliese 581 d

Kepler-62 f

GARDobes from Mars?

Perhaps not too small...

McKay et al. Science 1996

This?

Or that?

End of talk on beginning of life

Does lipid entry to a micelle require catalysis? Lipid joining free energy diagram

Does lipid entry to a micelle require catalysis? Lipid joining free energy diagram

An interaction strength **distribution** is obtained from experimental **biomolecules** such as **antibodies** and hormone receptors, is used in GARD comGARD simulations

UDP-2,3-diacylglucosamine A bacterial nucleotide-lipid

Christian R. H. Raetz, Journal of Bacteriology, 1993, 5745-5753