Non-enzymatic replication of sequences containing 4 letters

Noam Prywes ILASOL April 11th, 2018

History of the World

History of the World

"Modern" life

Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

"Modern" life

Mycoplasma mycoides

Life is based on information

ATGTCCACATTG...

100100011010...

...information that must be copied

DNA replication

SCRIPTORIUM MONK AT WORK. (From Larreix,)

DNA replication

SCRIPTORIUM MONK AT WORK. (From Larvix,)

"Modern" life

The RNA World

The RNA World

How was information replicated in the RNA world?

How was information replicated in the RNA world?

How do we get ribozymes in the first place?

Can some other copying mechanism produce the first ribozymes?

Schramm, G., Grötsch, H. & Pollmann, W. Nicht-enzymatische Synthese von Polysacchariden, Nucleosiden und Nucleinsäuren. Angew. Chem. 73, 619–619 (1961).

Nonenzymatic replication

NTPs

18

NTPs

NTPs don't work

Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Templatedirected synthesis with adenosine-5'-phosphorimidazolide. Science 161, 387 (1968).

Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Templatedirected synthesis with adenosine-5'-phosphorimidazolide. Science 161, 387 (1968).

Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Templatedirected synthesis with adenosine-5'-phosphorimidazolide. Science 161, 387 (1968).

July 1968, almost exactly 50 years ago

Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Templatedirected synthesis with adenosine-5'-phosphorimidazolide. Science 161, 387 (1968).

Phosphoryl transfer

Primer extension

Key challenge: A/U

Key challenge: A/U

The problem is more than just weaker binding of A and U vs. G and C

Importance of downstream binders

10 minutes

Slow trimer ligation

10 minutes

Micro-helpers

Deck, C., Jauker, M., Richert, C., 2011. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem 3, 603–608.

Micro-helper mechanism

Deck, C., Jauker, M., Richert, C., 2011. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem 3, 603–608.

Weak micro-helper assistance

10 minutes

Activated micro-helper

5'

10 minutes

Activated micro-helper

Leaving group effect

Bridged intermediate

Walton, T, Szostak, JW "A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension" JACS 2016

Bridged intermediate

Walton, T, Szostak, JW "A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension" JACS 2016

Micro-helpers

Key challenge: A/U

Wu, T., Orgel, L.E., 1992. Nonenzymic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides. J Am Chem Soc 114, 317–322.

Other monomers

Other monomers

Heuberger, B. D., Pal, A., Del Frate, F., Topkar, V. V. & Szostak, J. W. J Am Chem Soc 137, 2769–2775 (2015).

Prywes, N., Michaels, Y. S., Pal, A., Oh, S. S. & Szostak, J. W. Chem. Commun. (Camb.) 52, 6529–6532 (2016).

42

Fidelity

Fidelity

Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

+4		-		-	
+3				-	
+2			-		
+1		-		-	
Primer	-				
AGC	-	+	+	+	
GCG	-	-	+	+	

CGG - - - +

4 3		1		-	-	-
2		_	-	-		
1 er	-			_		
)	-	+	+	+	+	
£	-	-	+	+	+	

- CGG - + +
- GGG - - +

Deck, C., Jauker, M., Richert, C., 2011. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem 3, 603–608.

Beads

Bead immobilization

~150 hours total

One pot hammerhead

Aminoimidazole leaving group

Li Li, Noam Prywes, Chun Pong Tam, Derek K. O'Flaherty, Victor S. Lelyveld, Enver Cagri Izgu, Ayan Pal, and Jack W. Szostak. "Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides." Journal of the American Chemical Society (2017).

In-vesicle replication

Derek K. O'Flaherty, Neha P. Kamat, Fatima N. Mirza, Li Li, Noam Prywes and Jack W. Szostak. "Copying of mixed sequence RNA templates inside model protocells." Journal of th American Chemical Society (2018).

Acknowledgements

Jack Szostak

Francesca Del Frate Craig Blain Li Li Travis Walton Neha Kamat Derek O'Flaherty

Szostak Lab

Effect of micro-helper length

Effect of micro-helper length

 $X = - \mathcal{R}_{\mathcal{R}}^{\mathcal{O}} \mathcal{O}_{\mathcal{R}}^{\mathcal{O}}$

Effect of micro-helper length

Curious result

Two chickens, two eggs

Proteins make RNA, RNA makes proteins

Solution - RNA replicase makes RNA in the RNA world

#2

#1

"Without evolution it appears unlikely that a self-replicating ribozyme could arise, but without some form of self-replication there is no way to conduct an evolutionary search for the first, primitive self-replicating ribozyme."

> Robertson, M.P., Joyce, G.F., 2012. The origins of the RNA world. Cold Spring Harbor Perspectives in Biology 4.

Benefit of thioU and thioT

N' = A

Two A or U additions

U	+	+	+	-	-	-
thioU	-	-	-	+	+	+
UGA	-	+	+	-	+	+
GAU	-	-	+	-	-	+

Overlapping trimers

Non-enzymatic primer extension

Courtesy of Li
One pot aminoimidazole

